

Applications in timber construction, roofing and renovation work

Information for the timber trade, timber housing developers, carpenters, roofers and others working with wood

- The benefits of esb panels
- Wall structures
- Building physics calculations
- Sample calculations for static sheet action

The Solution for healthy climate, living and building

Technological advantages and availability

A better solution:

Size: tongue and groove

278.5 cm x 67.5 cm / coverage **) 258 cm x 67.5 cm / coverage 205 cm x 62.5 cm / coverage *)

*) Not including 30 mm thickness **) 15 mm ex-stock

Size: flush

280 cm x 125 cm **) 259.5 cm x 125 cm *)

*) Not including 30 mm **) 15 mm ex-stock

Large size: flush

520 cm x 206 cm *) in 9/12/15/18/22/25 mm

*) Supplied from 80 pcs per thickness

Material thickness/ pack quantities

12 mm 75 pcs

15 mm 60 pcs

18 mm 49 pcs

22 mm 40 pcs

25 mm 36 pcs

30 mm 30 pcs

Non-standard dimensions available upon request

Technological advantages:

- ✓ Bending strength and modulus of elasticity same in both directions
- Greater transverse tensile strength than OSB (approx. 40 % more)
- ✓ Less swelling than OSB

Advantages in application:

- ✓ Very light surface and appearance
- Domestic green wood with no odour emitted
- Same weight as OSB
- Meets IPPC standard ISPM No. 15 for wooden packaging
- Sanded finish and therefore:
 - Vapour-permeable
 - Adhesives, paints and varnishes can be applied
 - The surface is virtually sealed
 - The decorative and natural character of wood is shown
 - The boards have an extremely precise fit

At a glance:

- Building physics: vapour-permeable material (see WUFI® database)
- **Excellent static values** (complies with EN 12369 Part 1 and ISO/IEC 20000-1) and technical values (complies with EN 13986 and/or EN 312)
- Extremely precise fit
- Light sanded surface
- Green wood; no odour emitted
- Optimum value for money
- ✓ For general use in load-bearing structural components in humid conditions P5 EN 312

esb blog:

On our esb blog

(esb-blog.elka-holzwerke.de - in German), we regularly publish examples of applications and questions from users.

We particularly welcome your posts with comments, questions and photos of applications.

Tongue and groove are a precise match

Technical properties1)

	A CONTRACTOR OF THE	The state of the s		100	and the second	1 2 2 70	(C) (V) (C)	100		
Thickness [mm]	9	12	15	12 /	12 / 15		22 / 25	18	- 25	30
Туре		ESB P5		0SB 2	0SB 3	ESE	3 P5	0SB 2	0SB 3	ESB P5
Transverse tensile strength [N/mm²]	>0,45	>0,45	>0,45	>0	,32	>0,45	>0,40	>0	,30	>0,35
Bending strength lengthwise [N/mm²]	>18	>18	>16	>:	20	>16	>14	>	18	>12
Bending strength crosswise [N/mm²]	>18	>18	>16	>	10	>16	>14	>	.9	>12
24 hr swelling [%]	<13	<11	<10	<20	<15	<10	<10	<20	<15	<10

¹⁾ The technical properties given for esb are in accordance with EN 312 and for OSB in accordance with DIN 300; the actual values under DIN 300 for esb panels are significantly better. Thermal conductivity $\lambda = 0.10$ W/mK, Water vapour diffusion resistance factor (μ) dry/humid = 25/25

The esb panel used as a wood-based material in the construction industry is listed in Section 1.3.2.1 of the German Building Rules B [Bauregelliste B] Part 1 and therefore complies with German building regulations.

5 compelling advantages of esb panels

Why are esb panels better than OSB panels?

Due to their excellent static (EN 12369 Part 1 and ISO/IEC 20000-1) and technical values (EN 13986 and/or EN 312), esb is suitable for constructing floors, wall and roof panelling, hoardings, shop fittings and building trade fair stands, interior fittings, structurally effective ceiling, roof and wall panels in timber frame construction and in packaging.

esb's technical properties in detail:

Bending strength and modulus of elasticity:

The bending strength and modulus of elasticity of esb panels are the same in both directions, unlike OSB panels where the value is halved across the width.

Your advantage: Trade professionals can exploit the blank panel to the optimum extent.

No mistakes as a result of confusing the main and minor axes occur when working with esb panels.

Transverse tensile strength:

The transverse tensile strength is 40 % greater than for an OSB panel.

Your advantage: It produces better screw and nail extraction rates.

Swelling values:

The swelling values are considerably lower than for OSB panels.

Your advantage: The panels provide a high level of dimensional stability for processing.

A superb appearance with a sanded finish:

esb panels have a very bright surface and a clean appearance as a result of using green wood. esb panels are supplied ready sanded.

Your advantage: There's no need for any further processing or sanding.

Can esb panels be varnished?

Yes, certainly. As esb panels are thoroughly sanded and have a virtually impermeable surface, vapour-permeable varnishes - as well as paints and adhesives - can be applied. This is not possible with OSB panels which are not sanded.

Can esb panels cause unpleasant odours indoors?

No, not at all. esb panels are largely odour-neutral and support a healthy home environment.

On the other hand, OSB panels can under certain circumstances release volatile organic compounds such as hydrocarbons, aldehydes, acetones and organic acids into the atmosphere. Unpleasant odours, irritation of the mucous membranes and toxic long-term effects are listed by Germany's environmental protection agency, the Umweltbundesamt, in its research project on the "Measurement of VOC emissions from OSB panels-UMID 1 2013" as possible effects.

What is the significance of the vapour-permeable quality of esb panels?

Just as heat always travels from the warm to the cold side, a process of compensation also takes place between areas with different levels of humidity. In ensuring that this function continues unhindered, a combination of vapour retarders and our vapour-permeable esb panels represents an intelligent solution. The panels prevent condensation from building up — and therefore damage that would otherwise be caused to the building by damp.

esb panels are a vapour-permeable woodbased material that equalises variations in the atmosphere indoors. esb panels have proved to be valuable on external walls as well, e.g. as a support for rear ventilated formwork or used in conjunction with vapour-permeable heat insulation. When used in this way, esb panels ensure that moisture is transported through the thickness of the wall. For a vapour-impermeable construction, an additional film is fitted on the warmer side to act as a vapour retarder. This technology has been successfully used for decades in the prefabricated housing sector.

We suggest that a review of the building physics is carried out for the structure where esb panels are intended for use without a vapour barrier.

What do esb panels cost?

Normally esb panels are cheaper than OSB panels. The price depends on current timber prices and the quantity ordered.

As they have a wide range of application, esb panels can replace particle-boards P2, P3, P5, OSB/2, OSB/3 and vapour-permeable wood fibre panels.

IN SHORT: esb – the all-round talent with lots of advantages!

esb panels (P5) are fabricated in accordance with EN 312. They can be supplied in FSC®-certified and/or PEFC-certified quality and carry the CE mark of conformity.

External wall construction applications

Example: External wall 1 (vapour-permeable structure)

Example: External wall 2 (vapour-permeable structure)

Example: External wall 3

Example: External wall 4 - thermal insulation composite system, e.g. in accordance with approval no. Z-33.47-811 (sto Z-33.47-859 ((simplified version) under German general building regulations.

Example: External wall 5

Example: External wall 6

Sample building physics calculation for external wall 3

Material		Density [kg/m³]	Thickness s [mm]	λ W/mK]	R [m²K/W]	Diff. res.	
Air transition warm side RSi 0.13 1 Plaster board DIN 18180 2 Mineral wool insulation 035 3 ESB 4 PE film vapour retarder 5 Mineral wool insulation 035 6 ESB Air transition cold side RSe 0.08	D D D	900,0 50,0 600,0 1100,0 50,0 600,0	12,50 50,00 15,00 0,20 200,00 12,00	0,035 0,140 0,200 0,035	0,060 1,429 0,107 0,001 5,714 0,086	8 1 24 100 000 1 24	Warm side
Thickness = 289.7 mm	Surface weight = 40.2 kg/m ²			R = 7,4	10 m²K/W		U-value = 0.131 W/m ² K

Heat transmission calculation

Data calculated: Thermal resistance R Thermal resistance R _T	7.40 [m²K/W] 7.61 [m²K/W]
Heat transition coefficient – U-value	0.13 [W/m ² K]

Minimum thermal protection

Assessment of thermal protection in accordance with DIN 4108-2:2003-7 lightweight construction elements (<100 kg/m²): the thermal resistance of the entire element is used for assessment purposes
Surface weight used in calculation 40.2 Kg/m²
R on least favourable side 7.396 m²K/W

DIN 4108-2:2003-7 requirements are met

Minimum value for R

Vapour diffusion parameters

	Warm side	Cold side
Dew period:		
Air temperature	20,0 °C	-10,0 °C
Relative humidity	50,0 %	80,0 %
Length of dew period	1440 hours	
Vanariaation pariad.		
Vaporisation period:	10.0.00	10.0.00
Air temperature	12,0 °C	12,0 °C
Relative humidity	70,0 %	70,0 %
Length of vaporisation period	2160 hours	
Roof temperature	°C	
Element calculated as wall		

Result of DIN 4108-compliant investigation: CASE A

Structure is OK. No condensation forms

Verification for individual elements (heat transmission and vapour diffusion calculation) in accordance with DIN 4108 and EN ISO 6946

1.750 m2K/W

Dew period vapour pressure curve according to Glaser

Temperature curve for layered structure

Internal wall construction applications

Internal wall

Example: Internal wall structure

Measurement/load-bearing capacity

Detailed evidence

ESB internal wall Wall panels according to EN 1995

Use class = 1 gamma.m timber = 1.30 El Board system: Panel edges attached with shear connections on all sides 1.30 Exposure time short Panelling on both sides, butt joints spaced at least one rib apart

Length of board	lt	=	5.00	m
Height of board	ht	=	2.50	m
Horizontal load	Fv,d	=	10.00	kN
Horizontal shear lag	sv,0,d	=	2.00	N/mm
Normal force in edge rib from horizontal load	Fd	=	5.00	kN
Pressure force edge rib-bottom rib from horizontal load	Fc,r,d	=	-3.35	kN
Pressure force internal rib-bottom rib from horizontal load	Ec,i,d	=	-1.00	kN
-				

External panelling:				
Panel	bp(cm)	tp(mm)	Rho(kg/m³)	kmod
P5 > 13-20 mm	125.00	15.0	600.00	0.85
Internal rib	br(cm)	hr(cm)	Rho(kg/m³)	kmod
C24	6.00	10.0	350.00	0.90
Nail	My,k(Nmm)	d(mm)	I(mm)	
Na 25x60	1949.47	2.5	60.0	
Nail tolerance:			gamma.m clou =	1.10
		t,req(cm)	fh,k(N/mm²)	Rd(kN)
Panel		1.8	44.87	

Internal rib			2.5	21.80	0.36
a2(cm)	erf.s(cm)	vh.s(cm)	erf.l(cm)	vh.l(cm)	1,2*Rd,ges(kN)
1.8	1.0	4.5	2.5	6.0	0.43
vh.av(cm)	ar(cm)	kv1	kv2	fv,d(N/mm ²)	fv,0,d(N/mm ²)
10.0	65.0	1.00	0.50	4.25	4.33
				erf.av =	43.27 cm
				vh.av/erf.av =	0.23
Internal panelling:					
Panel		bp(cm)	tp(mm)	Rho(kg/m³)	kmod
P5 > 13-20mm		125.00	15.0	600.00	0.85
Internal rib		br(cm)	hr(cm)	Rho(kg/m³)	kmod
C24		6.00	10.0	350.00	0.90
Nail		My,k(Nmm)	d(mm)	I(mm)	
Na 25x60		1949.47	2.5	60.0	
Mad Adams a					4 40

Panel		bp(cm)	tp(mm)	Rho(kg/m³)	kmod	
P5 > 13-20mm		125.00	15.0	600.00	0.85	
Internal rib		br(cm)	hr(cm)	Rho(kg/m³)	kmod	
C24		6.00	10.0	350.00	0.90	
Nail		My,k(Nmm)	d(mm)	I(mm)		
Na 25x60		1949.47	2.5	60.0		
Nail tolerance:				gamma.m clou =	1.10	
			t,req(cm)	fh,k(N/mm²)	Rd(kN)	
Panel			1.8	44.87		
Internal rib			2.5	21.80	0.36	
a2(cm)	erf.s(cm)	vh.s(cm)	erf.l(cm)	vh.l(cm)	1,2*Rd,ges(kN)	
1.8	1.0	4.5	2.5	6.0	0.43	
vh.av(cm)	ar(cm)	kv1	kv2	fv,d(N/mm²)	fv,0,d(N/mm ²)	
10.0	65.0	1.00	0.50	4.25	4.33	
				erf.av =	43.27 cm	
				vh.av/erf.av =	0.23	
		sv,0,0	d/(fv,0,d,extérieı	ur+fv,0,d,intérieur) =	0.23	

Example: Static sheet calculation for internal wall

Ceiling construction applications

Example: Internal ceiling construction in unheated room

Ceiling 2

Floor covering
Screed
Insulation
ESB panel 22 mm
Insulation
Beams
Battens
Plaster board
12.5 mm

Example: Internal ceiling construction in heated room

THE RESERVE OF THE PERSON NAMED IN			The state of the s		AND THE PARTY OF	2/2						
Measurement/load-l	bearing capaci	ty	Detailed evidend	ce								
ESB ceiling	Roof and ceiling boards in accordance with EN 1995											
Root and ceiling bo	Darus in acco	ruance with E	N 1995									
Distributor												
. H+av	च ¶†											
e i ai	· I+											
Flange Lange												
,	⊸ 4											
흥 <u>,</u> ht	→											
Use class	= 1 gamma	.m timber =	= 1.30 Expos	sure time =	medium							
Board system: Single-s				ernal ribs								
			ions not on all sides									
Panellin	g on one side, bu	ıtt joints spaced a	at least one rib apart									
Board span				lt	= 5.00							
Height of board				ht	= 10.00							
Calculated height of bo Load	aru			htr ad	= 5.00 = 5.00) III) kN/m						
Shearing force				yd Vd	= 5.00							
Shear lag				sv.0.d		N/mm						
Moment				Md		kNm						
Flange force to be verif	ied (Md/htr)			Zd	= 3.13	3 kN						
Flange force to be trans				Gd	= 1.56	6 kN						
Supporting force to be	transferred and v	erified/		Ad	= 12.50) kN						
Panelling:		In (1-1-1)	t ()	Di (I (2)								
Panel P5 > 20-25mm		lp(cm) 250.00	tp(mm) 22.0	Rho(kg/m³) 550.00	kmod 0.65	-						
Internal rib		250.00 br(cm)	22.0 hr(cm)	Rho(kg/m³)	kmod							
C24		12.00	20.0	350.00	0.80	-						
Nail		My,k(Nmm)	d(mm)	I(mm)	0.00	•						
Na 31x70		3410.46	3.1	70.0								
Nail tolerance:				gamma.m clou =	1.10							
			t,req(cm)	fh,k(N/mm²)	Rd(kN)						
Panel			2.2	40.11	0.40							
Internal rib a2(cm)	erf.s(cm)	vh.s(cm)	3.1 erf.l(cm)	20.44 vh.l(cm)	0.48 Rd,ges(kN							
2.8	1.2	VII.S(CIII) 4.8	3.4	vii.i(ciii) 7.0	nu,yes(kiv 0.48							
vh.av(cm)	ar(cm)	kv1	kv2	fv,d(N/mm²)	fv,0,d(N/mm²							
10.0	62.5	0.66	0.33	2.95	3.19							
				erf.av =	19.32 cm	1						
				vh.av/erf.av =	0.52	2						
				sv,0,d/fv,0,d =	0.78	-						
Flange		bg(cm)	hg(cm)	ft,0,d(N/mm²)	kmod							
C24		12.00	20.00	8.62	0.80							
Distributor		h = (=)	harfa 3	Zd/bg*hg/ft,0,d =	0.02							
Distributor C24		bg(cm) 12.00	hg(cm) 20.00	fc,0,d(N/mm²) 12.92	kmod 0.80							
024		12.00	20.00	Ad/bv*hv/fc, 0,d =	0.80 0.0 4							
				710/ DV 11V/10, U,U =	0.04	•						

Example: Static sheet calculation for ceiling

Roof construction applications

Roof 1

Vapour retarder FSB 15 mm Plaster board *When structure complies with standard roof pitch and roof covering overlaps

Example: Roof structure 1 (esb panel providing a high degree of reinforcement)

Roof 2 Wood fibre sarking board Insulation/rafters

Example: Roof structure 2 (wood fibre sarking board providing no reinforcement)

Example: Roof structure 3 (esb panel providing a high degree of reinforcement)

Have you seen the full and versatile range of EIK∃® products? Find out more from your local dealer.

Particleboard

Cladding profiles

Raised bed system & garden planters

Decking and fencing

리Ka-Holzwerke GmbH Hochwaldstraße 44 D-54497 Morbach

Phone: +49 (0) 65 33 / 9 56-332 +49 (0) 65 33 / 9 56-330 vertrieb@elka-holzwerke.de Website: www.elka-holzwerke.eu

Our production sites:

Morbach/Hunsrück • Kirn/Nahe

Elka-Holzwerke GmbH has a proud company history that stretches back over 100 years. Professionally trained staff and modern production technology guarantee the high standard of quality that **□I**★**□**® brand products provide.

Your authorised dealer would be delighted to advise you:

flore time to enjoy…thanks to **⊑li∖**⊒ speed and versatility.